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Disclaimer

This is a workshop, not a training.

• Deep learning for HPC is a very new field of research

• We don’t have the solutions, we want to help you find them!
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Overview

What is deep learning for HPC?

Deep learning for HPC projects @ SURF

How to replace/augment an HPC simulation with deep learning?

Conlusions

Round tables
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What is high performance computing (HPC)?

4

Chemistry

Sources: J.A. Lemkul, http://www.mdtutorials.com/gmx/ ; Symscape http://www.symscape.com

Particle physics Meteorology

AstrophysicsComplex Fluid Dynamics

and more …

http://www.mdtutorials.com/gmx/
http://www.symscape.com/


What is deep learning for HPC?
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Usage of deep learning (DL) to

• Accelerate traditional HPC workloads / simulations (at same accuracy)

• Improve accuracy of traditional HPC workloads / simulations (at same computational cost)



Deep learning projects @ SURF
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Particle physics

Meteorology

Computational
structural biology

Astrophysics



Particle physics: event generation

Radboud University: Sydney Otten, Sascha Caron (PI), et al

SURF: Damian Podareanu, Caspar van Leeuwen
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*Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer
S. Otten, S. Caron, W. de Swart, et al, arXiv, 2019

Traditional simulation

• Generating particle events through Monte Carlo 
simulation

• Requires repeated sampling of probability 
distribution

• Simulation may take up to O(10) minutes for 
realistic LHC events!*



Particle physics: event generation

Deep learning approach:

• Model: Complete simulation replaced with 
generative neural network (B-VAE)*

• Validation: Physical parameters follow the same 
distribution as for the original simulation

• Speedup: O(108) faster
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*Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer
S. Otten, S. Caron, W. de Swart, et al, arXiv, 2019



Meteorology

Wageningen University: Robin Stoffer, Menno Veerman, Chiel van Heerwaarden (PI)

SURF: Damian Podareanu, Caspar van Leeuwen

Traditional simulation

• Sub-grid model to resolve turbulent transport at scales < grid spacing

• Good sub-grid models are expensive

• Faster sub-grid models may not be very accurate or have strong assumptions
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Example: Water evaporation & transport above an irrigated field, high vs low resolution



Meteorology

Deep learning approach:

• Model: Sub-grid model replaced by neural network, rest of the traditional simulation 
remains intact

• Validation: Correlation of 0.7 - 0.8 is excellent for stochastic quantity

• Speedup: to be determined, but main goal is increased accuarcy
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Meteorology

2nd project: similar approach for radiation transport

• Traditional model: estimates physical properties (e.g. optical depth) based on air 
composition, pressure, etc

• Deep learning approach: neural network with the same inputs

• Validation: difference with original parametric model negligible

• Speedup: At least 3 times faster
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Astrophysics

Leiden Observatory: Maxwell Cai, Simon Portegies Zwart (PI)

SURF: Maxwell Cai, Valeriu Codreanu, Caspar van Leeuwen

Traditional simulation

• Numerical integration of planetary systems & containing star cluster

• Large difference in scale: computationally intensive!

• Many ways to map the problem to deep learning…
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Astrophysics

• Many starting parameters to vary (e.g. planetary masses, stellar masses)

• Simulation can be done, but only for a couple of starting parameters

• Use DNN to predict for other points in the parameter space

• Can be any type of DNN: we’ve tried many!
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Astrophysics

As a time series (LSTM)

• Physical parameters (position, velocity, etc) as function of time

• Can only forecast for short time scales (for non-linear systems), few kyr

14



Astrophysics

As pattern recognition problem

• Physical parameters as function of time organized as array

• Regression to predict change in next time step

• Can predict further into the future (up to 1 Myr), but not further
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Regression: predict for next 1 Myr



Astrophysics

As image-to-image translation problem

• Physical parameters as function of time organized as array

• Image-to-image translation to predict whole series of future time properties

• Will accumulate errors, so again, limited prediction into the future is possible

16



Astrophysics

As reinforcement learning problem

• Reinforcement learning: an agent acting in a changing environment to optimize a reward

• A planet (agent) moving (acting) under the influence of a nearby star (environment) following 
a path as close as possible to the original simulation (reward)

• Error accumulation in time is mitigated

• Works ok for individual systems, but doesn’t result in correct distribution
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Astrophysics

Solutions enabled further and further prediction in the future, but problem not fully solved yet.

Why is this problem so difficult?

• Underlying systems chaotic

• High dynamic range

• Extremely imbalanced training samples (significant ‘jumps’ in the time series)

• Extremely long term prediction needed
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Computational Structural Biology

Utrecht University: Cunliang Geng, Alexandre Bonvin (PI)

SURF: Valeriu Codreanu, Caspar van Leeuwen

Traditional problem: distinguish biological interfaces from crystallographic interfaces

• Traditional model: classical classification approaches

• Deep learning: 3D convolutional classification task for deep learning

• Validation: accuracy quickly on par with traditional methods

19 doi:10.1042/BST0361438



How to replace/augment an HPC simulation with deep learning?

There is no fixed ‘recipe’! Let’s try to provide some structure:

• Why is my traditional simulation computationally heavy?

• How will I enhance/speedup my code?

• How do I encode my problem?

• What deep learning model fits that encoding naturally?

• How will I validate my trained model?

• Try it! You may have too loop through these questions multiple times as you go…

• Improve inference speed

Deep learning for HPC is pioneering. Lot of exploration and adaptation needed. You may need 
to loop through the above questions multiple times. 
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Why is my traditional simulation computationally heavy?

Profile original application

• Identify if there are heavy kernels, that are responsible for the majority of computation 
time
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How will I enhance/speedup my code?

Augmentation

• Increases the efficiency of / reduce computation needed in your traditional simulation 
through DL

• Example: in a parameter sweep, use DL to skip irrelevant points (smart ‘pre-processing’)

• Example: use DL to interpolate / otherwise increase accuracy of your output (smart ‘post-
processing’)

Replacement

• Replaces (part of your) traditional simulation with a DL model

• Example: replace a computationally heavy kernel in your simulation with a DL model.

• Example: replace the full simulation with a DL model
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How do I encode my problem?

• Many ways to encode the same problem!

• Example: astrophysics project was encoded as time series, image, etc…
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How do I encode my problem?

Does a relation between input and output exist? Use your domain knowledge to…

• Example: predicting unresolved turbulence based on coarse scale input can be done, 
because turbulence at large scales (that are resolved) are related to turbulence at small 
scales.
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Input X Output Y
F(X)

A neural network can approximate F(X), but only if it exists!



How do I encode my problem?

Do I have the correct data for this encoding?

• Can I generate data with my original simulation method?

• Is my data of sufficient quality? 

• Is my data of sufficient quantity?

• Example: in turbulence modelling, data at both the coarse and fine resolution was needed. 
Since the simulation is stochastic, we could not simply run the simulation at two different 
resolutions => ran it at high resolution, and downsampled to obtain coarse resolution.
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How do I encode my problem?

What do I know about my input and output data?

• Understand correlations between inputs, relationship between input and output data

• Is everything that would determine my output data within my input data?

• Example: if you’re trying to replace an equation that is rotation invariant, you’ll need a 
model that either incorporates this explicitly, or learns it from the data.
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Data augmentation: rotation



What deep learning model fits that encoding naturally?

• A fully connected network can learn a time series problem, but doesn’t map the problem 
as ‘naturally’ as a recurrent neural network

• A model that maps the problem better is likely to be more accurate / need less data / need 
fewer degrees of freedom

• Example: I can approximate a non-periodic signal with a Fourier series, but will need many 
degrees of freedom & a lot of data. Polynomials would be a more ‘natural’ fit.
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What deep learning model fits that encoding naturally?

Rough indications:

Example meteorology: multiple unresolved transports possible for the same coarse grid. 
Sufficient if we are right on average.

Example particle physics: not interested in average particle properties (e.g. momentum), the 
whole point is we want samples from the full distribution.

Type of data Architecture

Flat unstructured list Fully connected

2D / 3D spatial Convolutional architecture

Time series Recurrent neural network / 1D Conv

Output of interest Architecture

Predict single number / average Regression

Sample distribution of outcomes Generative networks (GAN, VAE)



How will I validate my trained model?

Hard to give general indication, depends on your acceleration approach

Augmentation / replacement of full simulation

• Compare to classical simulation outcomes (particle physics, astronomy, computational 
structural biology)

Replacement of part of simulation (kernel):

• A priori validation: compare that predicted output matches output of the classical kernel 
(meteorology example)

• A posteriori validation: integrate the DL-based kernel and check output of full simulation 
against classical numerical simulation
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Try it! Iterate through the steps…

Try it! You may have too loop through these questions multiple times as you go…

• Developing a good deep learning approach is very much an experimental effort. 

• If your results are poor, why could that be?

• Example (particle physics): GAN’s resulted in realistic individual particle events. However 
their frequency distribution didn’t match reality. Why? GAN’s mostly check if individual 
events are ‘realistic’!

30 Angular frequency distribution (GAN)



Improve inference speed

• Inference speed of training frameworks is often suboptimal

• Can you code it at a low level? Is there a framework you could use that is optimized for 
inference (e.g. Tensor-RT, Intel OpenVINO)

• Can you prune your network? (cut out unimportant connections to reduce computation)

• Can you redo your network in reduced precision? GPUs have increased throughput for e.g. 
FP16, mixed precision, INT8, etc. Reduces memory bandwidth bottlenecks (CPU & GPU).
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Tensor core operations of Nvidia V100 GPUs



Lessons learned

• New paradigm (especially when replacing full simulations): instead of traditional numerical 
algorithms, you can simulate your theory through DL

• Scientific domains would have very different tools and software for numerical simulations. 
Now, we suddenly all have a very similar problem, with very similar tools. Opportunity for 
multi-disciplinary collaboration!

• Deep learning models rarely work ‘out of the box’, must often be tuned to the problem. 
This requires both expertise from the scientific domain and the deep learning domain.
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Lessons learned

• Replacing small parts of a simulation, e.g. an existing parametric approximation, may more 
easily be accepted by community

• Replacing small parts will limit you in the same way as scaling through parallelization is 
limited: maximum speedup depends on how large that part is as fraction from the total 
compute time (Amdahl’s law).

• Replacing full simulation can give many orders of magnitude speedup
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Lessons learned

• Use your domain knowledge to solve problems you encounter! E.g. do you know that your 
replaced kernel should be invariant to rotation? Incorporate that knowledge!

• Invariance can be included in various ways: augmenting the inputs (e.g. rotating), choosing
different inputs (e.g. inputs that are rotation invariant, such as the magnitude of a vector) 
or built into the network architecture. The latter two options have the advantage that the
network doesn’t have to ‘learn’ to invarience.

• The same problem can often be mapped in different way. A weather simulation can be 
viewed as a spatial problem (3D grid-based), but also as a time problem (e.g. wind velocity 
as function of time for a given voxel).

• In generative models, there is a tradoff between coverage (how varied are the samples I 
can generated) and if the samples are ‘physically’ correct.
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Conclusion

• Very promising approach, large speedups are possible!

• New paradigm, especially when replacing full simulations. May meet resistance from 
scientific community!

• Pioneering work, requires a lot of exploration & adaptation

• Requires both deep learning & domain specific expertise (collaboration)
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Round table

Goal

Explore some of your use cases, help you formulate an initial approach

Setup

• Won’t be able to discuss all cases, but you can learn from other cases!

• Advise to stick with the same group, but you can switch after 45 min.

• Broad categories to increase the change of synergy with fellow participants

• But: feel free to discuss anything!
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Round table
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Topic Chair Where Card

Problem encoding Valeriu
Codreanu

Plenary room Red

Problem encoding Damian 
Podareanu

Plenary room Orange

2D/3D grid-based / mesh-based
(convolutional networks)

Caspar van 
Leeuwen

VK2, SURFsara Blue

Generation of samples, density
estimation (GANs, VAEs)

Sydney Otten Nano Yellow

Time series (RNNs, reinforcement
learning)

Maxwell Cai Innovation lab Green
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