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Disclaimer

This is a workshop, not a training.

• Deep learning for HPC is a very new field of research

• We don’t have the solutions, we want to help you find them!
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Overview

What is deep learning for HPC?

Deep learning for HPC projects @ SURF

How to replace/augment an HPC simulation with deep learning?

Conlusions

Round tables
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What is high performance computing (HPC)?

4

Chemistry

Sources: J.A. Lemkul, http://www.mdtutorials.com/gmx/ ; Symscape http://www.symscape.com

Particle physics Meteorology

AstrophysicsComplex Fluid Dynamics

and more …

http://www.mdtutorials.com/gmx/
http://www.symscape.com/


What is deep learning for HPC?
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Usage of deep learning (DL) to

• Accelerate traditional HPC workloads / simulations (at same accuracy)

• Improve accuracy of traditional HPC workloads / simulations (at same computational cost)



Deep learning projects @ SURF
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Particle physics

Meteorology

Computational
structural biology

Astrophysics



Particle physics: event generation

Radboud University: Sydney Otten, Sascha Caron (PI), et al

SURF: Damian Podareanu, Caspar van Leeuwen
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*Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer
S. Otten, S. Caron, W. de Swart, et al, arXiv, 2019

Traditional simulation

• Generating particle events through Monte Carlo 
simulation

• Requires repeated sampling of probability 
distribution

• Simulation may take up to O(10) minutes for 
realistic LHC events!*



Particle physics: event generation

Deep learning approach:

• Model: Complete simulation replaced with 
generative neural network (B-VAE)*

• Validation: Physical parameters follow the same 
distribution as for the original simulation

• Speedup: O(108) faster
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*Event Generation and Statistical Sampling for Physics with Deep Generative Models and a Density Information Buffer
S. Otten, S. Caron, W. de Swart, et al, arXiv, 2019



Meteorology

Wageningen University: Robin Stoffer, Menno Veerman, Chiel van Heerwaarden (PI)

SURF: Damian Podareanu, Caspar van Leeuwen

Traditional simulation

• Sub-grid model to resolve turbulent transport at scales < grid spacing

• Good sub-grid models are expensive

• Faster sub-grid models may not be very accurate or have strong assumptions
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Example: Water evaporation & transport above an irrigated field, high vs low resolution



Meteorology

Deep learning approach:

• Model: Sub-grid model replaced by neural network, rest of the traditional simulation 
remains intact

• Validation: Correlation of 0.7 - 0.8 is excellent for stochastic quantity

• Speedup: to be determined, but main goal is increased accuarcy
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Meteorology

2nd project: similar approach for radiation transport

• Traditional model: estimates physical properties (e.g. optical depth) based on air 
composition, pressure, etc

• Deep learning approach: neural network with the same inputs

• Validation: difference with original parametric model negligible

• Speedup: At least 3 times faster
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Astrophysics

Leiden Observatory: Maxwell Cai, Simon Portegies Zwart (PI)

SURF: Maxwell Cai, Valeriu Codreanu, Caspar van Leeuwen

Traditional simulation

• Numerical integration of planetary systems & containing star cluster

• Large difference in scale: computationally intensive!

• Many ways to map the problem to deep learning…
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Astrophysics

• Many starting parameters to vary (e.g. planetary masses, stellar masses)

• Simulation can be done, but only for a couple of starting parameters

• Use DNN to predict for other points in the parameter space

• Can be any type of DNN: we’ve tried many!
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Astrophysics

As a time series (LSTM)

• Physical parameters (position, velocity, etc) as function of time

• Can only forecast for short time scales (for non-linear systems), few kyr

14



Astrophysics

As pattern recognition problem

• Physical parameters as function of time organized as array

• Regression to predict change in next time step

• Can predict further into the future (up to 1 Myr), but not further
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Regression: predict for next 1 Myr



Astrophysics

As image-to-image translation problem

• Physical parameters as function of time organized as array

• Image-to-image translation to predict whole series of future time properties

• Will accumulate errors, so again, limited prediction into the future is possible

16



Astrophysics

As reinforcement learning problem

• Reinforcement learning: an agent acting in a changing environment to optimize a reward

• A planet (agent) moving (acting) under the influence of a nearby star (environment) following 
a path as close as possible to the original simulation (reward)

• Error accumulation in time is mitigated

• Works ok for individual systems, but doesn’t result in correct distribution
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Astrophysics

Solutions enabled further and further prediction in the future, but problem not fully solved yet.

Why is this problem so difficult?

• Underlying systems chaotic

• High dynamic range

• Extremely imbalanced training samples (significant ‘jumps’ in the time series)

• Extremely long term prediction needed
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Computational Structural Biology

Utrecht University: Cunliang Geng, Alexandre Bonvin (PI)

SURF: Valeriu Codreanu, Caspar van Leeuwen

Traditional problem: distinguish biological interfaces from crystallographic interfaces

• Traditional model: classical classification approaches

• Deep learning: 3D convolutional classification task for deep learning

• Validation: accuracy quickly on par with traditional methods

19 doi:10.1042/BST0361438



How to replace/augment an HPC simulation with deep learning?

There is no fixed ‘recipe’! Let’s try to provide some structure:

• Why is my traditional simulation computationally heavy?

• How will I enhance/speedup my code?

• How do I encode my problem?

• What deep learning model fits that encoding naturally?

• How will I validate my trained model?

• Try it! You may have too loop through these questions multiple times as you go…

• Improve inference speed

Deep learning for HPC is pioneering. Lot of exploration and adaptation needed. You may need 
to loop through the above questions multiple times. 
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Why is my traditional simulation computationally heavy?

Profile original application

• Identify if there are heavy kernels, that are responsible for the majority of computation 
time
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How will I enhance/speedup my code?

Augmentation

• Increases the efficiency of / reduce computation needed in your traditional simulation 
through DL

• Example: in a parameter sweep, use DL to skip irrelevant points (smart ‘pre-processing’)

• Example: use DL to interpolate / otherwise increase accuracy of your output (smart ‘post-
processing’)

Replacement

• Replaces (part of your) traditional simulation with a DL model

• Example: replace a computationally heavy kernel in your simulation with a DL model.

• Example: replace the full simulation with a DL model
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How do I encode my problem?

• Many ways to encode the same problem!

• Example: astrophysics project was encoded as time series, image, etc…
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How do I encode my problem?

Does a relation between input and output exist? Use your domain knowledge to…

• Example: predicting unresolved turbulence based on coarse scale input can be done, 
because turbulence at large scales (that are resolved) are related to turbulence at small 
scales.
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Input X Output Y
F(X)

A neural network can approximate F(X), but only if it exists!



How do I encode my problem?

Do I have the correct data for this encoding?

• Can I generate data with my original simulation method?

• Is my data of sufficient quality? 

• Is my data of sufficient quantity?

• Example: in turbulence modelling, data at both the coarse and fine resolution was needed. 
Since the simulation is stochastic, we could not simply run the simulation at two different 
resolutions => ran it at high resolution, and downsampled to obtain coarse resolution.
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How do I encode my problem?

What do I know about my input and output data?

• Understand correlations between inputs, relationship between input and output data

• Is everything that would determine my output data within my input data?

• Example: if you’re trying to replace an equation that is rotation invariant, you’ll need a 
model that either incorporates this explicitly, or learns it from the data.
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Data augmentation: rotation



What deep learning model fits that encoding naturally?

• A fully connected network can learn a time series problem, but doesn’t map the problem 
as ‘naturally’ as a recurrent neural network

• A model that maps the problem better is likely to be more accurate / need less data / need 
fewer degrees of freedom

• Example: I can approximate a non-periodic signal with a Fourier series, but will need many 
degrees of freedom & a lot of data. Polynomials would be a more ‘natural’ fit.
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What deep learning model fits that encoding naturally?

Rough indications:

Example meteorology: multiple unresolved transports possible for the same coarse grid. 
Sufficient if we are right on average.

Example particle physics: not interested in average particle properties (e.g. momentum), the 
whole point is we want samples from the full distribution.

Type of data Architecture

Flat unstructured list Fully connected

2D / 3D spatial Convolutional architecture

Time series Recurrent neural network / 1D Conv

Output of interest Architecture

Predict single number / average Regression

Sample distribution of outcomes Generative networks (GAN, VAE)



How will I validate my trained model?

Hard to give general indication, depends on your acceleration approach

Augmentation / replacement of full simulation

• Compare to classical simulation outcomes (particle physics, astronomy, computational 
structural biology)

Replacement of part of simulation (kernel):

• A priori validation: compare that predicted output matches output of the classical kernel 
(meteorology example)

• A posteriori validation: integrate the DL-based kernel and check output of full simulation 
against classical numerical simulation

29



Try it! Iterate through the steps…

Try it! You may have too loop through these questions multiple times as you go…

• Developing a good deep learning approach is very much an experimental effort. 

• If your results are poor, why could that be?

• Example (particle physics): GAN’s resulted in realistic individual particle events. However 
their frequency distribution didn’t match reality. Why? GAN’s mostly check if individual 
events are ‘realistic’!

30 Angular frequency distribution (GAN)



Improve inference speed

• Inference speed of training frameworks is often suboptimal

• Can you code it at a low level? Is there a framework you could use that is optimized for 
inference (e.g. Tensor-RT, Intel OpenVINO)

• Can you prune your network? (cut out unimportant connections to reduce computation)

• Can you redo your network in reduced precision? GPUs have increased throughput for e.g. 
FP16, mixed precision, INT8, etc. Reduces memory bandwidth bottlenecks (CPU & GPU).
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Tensor core operations of Nvidia V100 GPUs



Lessons learned

• New paradigm (especially when replacing full simulations): instead of traditional numerical 
algorithms, you can simulate your theory through DL

• Scientific domains would have very different tools and software for numerical simulations. 
Now, we suddenly all have a very similar problem, with very similar tools. Opportunity for 
multi-disciplinary collaboration!

• Deep learning models rarely work ‘out of the box’, must often be tuned to the problem. 
This requires both expertise from the scientific domain and the deep learning domain.
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Lessons learned

• Replacing small parts of a simulation, e.g. an existing parametric approximation, may more 
easily be accepted by community

• Replacing small parts will limit you in the same way as scaling through parallelization is 
limited: maximum speedup depends on how large that part is as fraction from the total 
compute time (Amdahl’s law).

• Replacing full simulation can give many orders of magnitude speedup
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Lessons learned

• Use your domain knowledge to solve problems you encounter! E.g. do you know that your 
replaced kernel should be invariant to rotation? Incorporate that knowledge!

• Invariance can be included in various ways: augmenting the inputs (e.g. rotating), choosing
different inputs (e.g. inputs that are rotation invariant, such as the magnitude of a vector) 
or built into the network architecture. The latter two options have the advantage that the
network doesn’t have to ‘learn’ to invarience.

• The same problem can often be mapped in different way. A weather simulation can be 
viewed as a spatial problem (3D grid-based), but also as a time problem (e.g. wind velocity 
as function of time for a given voxel).

• In generative models, there is a tradoff between coverage (how varied are the samples I 
can generated) and if the samples are ‘physically’ correct.
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Conclusion

• Very promising approach, large speedups are possible!

• New paradigm, especially when replacing full simulations. May meet resistance from 
scientific community!

• Pioneering work, requires a lot of exploration & adaptation

• Requires both deep learning & domain specific expertise (collaboration)
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Round table

Goal

Explore some of your use cases, help you formulate an initial approach

Setup

• Won’t be able to discuss all cases, but you can learn from other cases!

• Advise to stick with the same group, but you can switch after 45 min.

• Broad categories to increase the change of synergy with fellow participants

• But: feel free to discuss anything!
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Round table
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Topic Chair Where Card

Problem encoding Valeriu
Codreanu

Plenary room Red

Problem encoding Damian 
Podareanu

Plenary room Orange

2D/3D grid-based / mesh-based
(convolutional networks)

Caspar van 
Leeuwen

VK2, SURFsara Blue

Generation of samples, density
estimation (GANs, VAEs)

Sydney Otten Nano Yellow

Time series (RNNs, reinforcement
learning)

Maxwell Cai Innovation lab Green
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