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Al: a powerful and versatile tool

Tools” mission is to solve problems
Al is a computer-based tool

Al cannot do everything as computer has limits

Machine learning (ML):
Machine

learn experience from data to improve performance | earning
on specific tasks

Y = f(X)

Deep
Learning

Deep learning can learn more complex functions to
solve more complex problems




Deep Learning (DL)

DL is a method based on artificial neural networks (NN)
* In essence, an artificial NN is a very complex (non-linear) function Y = f(X)
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Go deeper: more hidden layers
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Convolutional Neural Network (CNN)

* CNN is one of the most successful DL tools
 CNN is good at learning from image-like data
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https://www.mathworks.com/solutions/deep-learning/convolutional-neural-network.html
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PDaMED: simple & useful work model to speed up ML projects

* Problem

- Data

- Model

- Evaluation
* Deployment



PDaMED speeding up ML projects

* Problem

« Define your scientific problem and check if ML can solve it or not
« Keep the problem simple; if not, decompose it
e Choose proper tool, DL might not be a must

* Transform the scientific problem to a ML problem
* e.g. classification, regression...

« Set a clear target

Scientific problems What ML can do




PDaMED speeding up ML projects

* Problem

- Data
* Do you have enough data?
« (Can you collect or generate enough data with reasonable effort?
« “Enough” data: volume, labels, variety, quality...

« Data engineering
e e.g. transformation, scaling, augmentation...

If DL is a rocket, then data is the fuel.
--- Andrew Ng



PDaMED speeding up ML projects

* Problem
- Data
- Model
« Training a model is an iterative cycle
» Versioning is important
e e.g. data, code, architectures, hyperparameters...

iIdea

experiment code




PDaMED speeding up ML projects

* Problem

- Data

- Model

- Evaluation

* Metric selection depends on the target

* Multiple targets: ONE optimizing metric and others using satisficing metrics
e.g. accuracy as high as possible, and speed lower than 1sec/case
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optimizing metric satisficing metrics



PDaMED speeding up ML projects

* Problem
 Data

- Model
- Evaluation

» Deployment
o software, webserver, docker, cloud...

Keep updating
the model!
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AP i . . SURF Open Innovation Lab
DeepRank for classifying protein-protein interactions ML4HPC project

PDaMED
* Problem
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doi:10.1042/BST0361438

Diffraction pattern Electron density map

Scientific problem:
how to distinguish 3D biological interface from crystal contacts




DeepRank for classifying protein-protein interactions

X-ray

Problem

—
—

Crystal

Diffraction pattern

Scientific problem:
how to distinguish 3D biological interface from crystal contacts

ML problem:
Given a 3D structure of protein-protein complex,
to classify its interface is biologically relevant or not
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DeepRank for classifying protein-protein interactions

* Problem
« Data

Atomic densities

Atomic energies

Residue contacts

Interface surface area 4 @

Evolutionary conservations

Labeled 3D structures of
protein-protein complexes

Training:
I t data:
positive (biological) 2829 fput ata
negative (crystal) 2911 Various structural properties,
Test: each type of property is a 3D image

pos 81, neg 81



DeepRank for classifying protein-protein interactions

PDaMED
* Problem

« Data

- Model
« 3D CNN architecture

Input 3D images



DeepRank for classifying protein-protein interactions

* Problem Computational support from SURF Cartesius & Lisa
- Data
- Model

One example of our experiments

3D CNN architecture

idea

experiment code

\

layer function activation #channel channelSize kernelSize stride padding

input - = 8 10x10x10 - -
convi conv3d relu 80 8x8x8 2 1
maxpool3d - 80 4x4x4 2 1

conv2 conv3d relu 120 2X2X2 2 1
maxpool3d - 120 1 2 1

fc linear relu - 120 - -
fc2 - logSoftMax - 2 - -

1 O O O O

Training/validation/test data, optimizer, CNN hyper-parameters, GPU/CPU...

Training Test Feature Architecture Optimiser
dataset augmentation datasetSplit dataset optimType learningRate momentum weighDecay epoch batchSize workers CPUnode #CPU

MANY 0 8:2 DC pssm+pssmic arch001-02 SGD -4 0.9 -4 30 2

16 1 2 0



DeepRank for classifying protein-protein interactions

* Problem Statistical Classification Metrics
Sensitivity Type I Error
o
Data Recall Precision o Accuracy FFJH:::UTE
M d I Power Fall Out
o
0 e TP | FP TP | FP TP | FP TP | FP TP | FP ﬁ FP
. +
o Evaluat|0n FN [ TN FN | TN FN | TN FN | TN FN | TN FN [ TN
/
TP | FP TP | FP TP | FP TP | FP TP | FP $: FP
+
FN | TN FN | TN FN | TN FN | TN FN | TN
True Positive False False Sgrensen-Dice
Positive Predictive Discovery Positive index
Rate Value Rate Rate
. Matthews
Type I; Error Specificity C“H“:t":‘ilf“ Correlation
Coefficient
actual
P | FP T | FP P | FP ™ | FP — @@ aer-
FN | TN FN | TN FN | TN FN | TN E ol e | EP @@ products
E
Cl=| FN | TN 1
TP | FP TP | FP TP | FP TP | FP = TP| | [FP)) sqma;
TP: True Positive ;rnc?:tluct
FN | TN FN | TN FN | TN FN | TN FP: False Positive FN| | [TN]) of sums
FN: False Megat%ue
False True Negative True TN: True HNegative
Negative Discovery Predictive Negative actual = ohserved
Rate Rate Value Rate predicted = expected

By: David James | License: GPL v3 | Updated: 2017-08-01
https://qithub.com/bluemont/statistical-classification-metrics



DeepRank for classifying protein-protein interactions

* Problem
« Data

- Model
- Evaluation
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Test accuracy = 0.8
Can correctly select 80% biologically relevant and
non-relevant ones from all given complexes



DeepRank for classifying protein-protein interactions

* Problem Q

- Data

» Model

- Evaluation
* Deployment

DeepRank

Deep Learning for ranking protein-protein conformations

The documentation of the module can be found on readthedocs : http://deeprank.readthedocs.io/en/latest/
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https://github.com/DeepRank/deeprank

EXAMPLES

DeepRank for classification
DeepRank for ranking




DeepRank for ranking protein-protein interactions

eScience Center
DeepRank project

* Problem
« Data
- Model

- Evaluation
» Deployment
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Docking
Program

Docking generates vast numbers
of structure models

The challenge:
How to select the
most native-like

structure models

DeepRank
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Take home message

Al is a tool

ML can empower scientific research, enabling a new paradigm
PDaMED, a simple & useful work model to speed up ML projects
DeepRank, a rich DL framework for studying biomolecular interactions

DeepRank

Deep Learning for ranking protein-protein conformations
© code qualty

The documentation of the module can be found on readthedocs : http://deeprank.readthedocs.io/en/latest/



https://github.com/DeepRank/deeprank

Contributors and support
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Thank you for your attention!

Cunliang Geng

c.geng@esciencecenter.nl
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netherlands

center
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