RETURN: Monitoring tropical forest recovery capacity using Big EO data

SURF: Seminar Enabling Copernicus Big Data Analytics through European Open Science Cloud

27.10.2021, Jan Verbesselt and Milutin Milenković

RETURN is a project funded by the Netherlands eScience Center (July 2019 – **Dec. 2021)**

Resilience of intact tropical forests

nature climate change

LETTERS

PUBLISHED ONLINE: 5 SEPTEMBER 2016 | DOI: 10.1038/NCLIMATE3108

Remotely sensed resilience of tropical forests

Jan Verbesselt^{1*}, Nikolaus Umlauf², Marina Hirota^{3,4,5}, Milena Holmgren⁶, Egbert H. Van Nes³, Martin Herold¹, Achim Zeileis² and Marten Scheffer^{3*}

Resilience of disturbed forests

BFAST : Break detection for time series

BFAST, Verbesselt, J., et al. (2010). Detecting trend and seasonal changes in satellite image time series. Remote sensing of environment https://github.com/bfast2/bfast

3

Monitoring tropical forest recovery capacity using:

Multispectral Images

- Wanda De Keersmaecker
- S2 & L8 surface reflectance
- MakeDataCube: R & FORCE

Radar Images

- Milutin Milenković
- **S1**
- Python & SNAP

Multi-spectral - makeDataCube - Landsat

makeDataCube Tool

- WUR, eScience, and SURF
- Analysis Ready Data (ARD) from Landsat images
- FORCE software: <u>https://github.com/davidfrantz/force</u>
 - SPIDER: SURF computer cluster (in house elastic cloud)
 - Parallelization enabled trough time splitting

https://github.com/RETURN-project/makeDataCube

Monitoring tropical forest recovery capacity using:

Radar Images

- Milutin Milenković
- **S1** radiometric terrain corrected
 - "Flattening Gamma"
- Python & SNAP
 - aset of python scripts

Sentinel-1 Time Series Analysis Framework

RETURN RADAR Workflow

RETURN RADAR Workflow

OpenEO User Defined Functions & BFAST

WAGENINGEN IVERSITY & RESEARCH

Challenges and Solutions

S1 ARD – Flattening Gamma

- CEOS Analysis Ready Data for Land (CARD4L) compliant
- Solution 1: Sigma0 from EODC
 - \rightarrow Collaboration on C-SCALE project
- Solution 2: Flattening Gamma processing @ SPIDER
 - \rightarrow SURF & WUR are currently testing SNAP gpt processing
- Solution 3: Flattening Gamma from VITO

 \rightarrow openEO Python UDF on the VITO Terrascope platform

Code & Input Data Structure

- Different data providers \rightarrow different data structures and tools
- Currently assumes xarray DataSet structure
- Solution: code has to be adopted

Conclusions and Outlook

- SURF can facilitate reproducible research with Big EO Data, BUT
 - ARD Cubes are prerequisite e.g. via SNAP, MakeDataCube (FORCE), or C-SCALE / data provider
 - Data could be exposed to users e.g. via openEO
 - New challenges beyond ARD Cubes are arriving as well

Thank you!

jan.verbesselt@wur.nl and milutin.milenkovic@wur.nl