Experience quantum computing

In this SURF Open Innovation Lab project we aim to support Dutch researchers in taking an early and competitive advantage of quantum computing technologies and facilities while these become available. We want to prepare, together with partners and our user community, for this possibly game-changing set of technologies.

Visueel beeld Quantum Entanglement

The quantum revolution

While conventional computers use binary bits (1 and 0) as the process for calculation, a quantum computer uses quantum bits, knows as qubits. These operate according to 2 key principles of quantum physics: superposition and entanglement. Superposition means that each qubit can represent both a 1 and a 0 at the same time, as well as many other states in between. Qubits exhibit properties of quantum entanglement – a phenomenon that means pairs, or groups, of particles, cannot be measured or described independently of each other. Measuring a single qubit in an entangled group instantly determines the state of other particles in the group. This holds true even if the particles are taken a virtually unlimited distance apart.

Large-scale quantum computers would theoretically be able to solve certain classes of problems much faster than a classical computer. Moreover, quantum computers can solve problems that are not feasible on classical computers because of their superposition characteristic. The potential future impact of quantum computing on the current classical computing is enormous. The quantum revolution goes very fast, and the Netherlands is a frontrunner in technology development. We are getting in the ‘quantum ready phase’, so we need to be prepared for the ‘quantum advantage phase’ (3-5 years) where quantum technology will be applied towards mainstream.

Goals of the project

We aim to support Dutch researchers to take early and competitive advantage of quantum computing developments and facilities while these become available. Furthermore, we want to

  • understand the applicability for scientific applications
  • stimulate and support the development of quantum applications
  • understand the required expertise and tools to ‘transform’ regular applications into quantum applications
  • support access and use of quantum simulators as well as physical quantum computers (in the future).

We do this by:

  • Exploring the applicability in scientific problems with use cases: we are stimulating and supporting use cases on quantum chemistry, machine learning, ray tracing and high energy physics. All domains are promising quantum application areas and large application areas of our current supercomputing facilities at SURF. We will evaluate potential, required effort, methods and tools. This way, we are building a set of joint expertise, examples and best practices.
  • Supporting education: we offer access to our facilities and examples, and we offer internships at different levels. We also participate in guest lectures.
  • Supporting access to and use of quantum applications development environments: we offer a tailored open development and execution environment for hybrid quantum simulations wiht a large number of quantum tools and a broad support of execution of experiments and use cases. More information on this can be found on our userinfo pages.
  • Disseminating knowledge: we are interested in creating interest in the Dutch research community through good examples and practices.


1. Stimulating quantum application development

SURF aims to stimulate and support the development of quantum applications in scientific research, in close collaboration with scientific research groups. We would like to evaluate the potential, understand the required expertise, efforts, methods and tools to develop quantum applications, to create good examples and best practices. For this purpose, SURF currently defines and supports 2 use cases for quantum application development, one in the area of computational chemistry, and one in the area of quantum machine learning. Both domains are promising quantum application areas and both domains are currently large applications areas of our current supercomputing facilities at SURF.

2. Quantum Inspire quantum computing platform

QuTech has launched a quantum computing platform to help you explore the opportunities and (future) power of quantum computation. Users get access to various technologies to perform quantum computations and learn the principles of quantum computing. Large algorithms can be executed on the national supercomputer Cartesius at SURF.

More information

3. Contributing to the development of the quantum internet

The future quantum internet will provide radically new internet applications by enabling quantum communication between any two points on Earth. The Quantum Internet Alliance (QIA) will create a blueprint for a pan-European quantum internet by developing the technology needed. SURF is one of the partners in the QIA project. QuTech coordinates the QIA project.  

SURF is contributing to the project through the development and execution of a fast and scalable simulator for quantum networks (NetSquid), high performance computing expertise, development efforts, and providing access to the national supercomputer facilities. In addition, we support the researchers of Delft University with our knowledge of and experience with very accurate time synchronisation (less than 1 nanosecond) over long distances, and with access to our dark fiber infrastructure.

Project team SURF

Ariana Torres-Knoop
Damian Podareanu
Maxim Masterov

Collaboration partners

Leiden University
University of Amsterdam
VU Amsterdam